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Introduction Our approach
We apply methods of Topological Data Analysis (TDA) to study the inner representation « TDA methods are known to capture well surface and structural patterns in
of transformer models to create efficient topologically-backend solutions for various tasks different types of data; they are also known to be more robust to noise in data.

of Speech Processing and explore the inner-works of the attention. L
Natural Language Processing was revolutionized by transformers — models without any
recurrent parts, instead relying on the attention mechanism. They also have shown out-

'he attention maps generated by the Transformer model can be represented as
weighted graphs and further efficiently investigated with TDA.
= We take a pretrained model, extract topological features from its attention maps and

embeddings, then use those features to build a linear classifier

= For some tasks, usage of transformer internal representations yields significantly better « Three groups of features: algebraic features of attention matrices (e.g. means of 3
performance than the traditional approach (via final embeddings).

= Attention allows model to focus on specific parts of data and learn complex dependen-
cies. It is intended to emulate human cognitive attention, yet attention maps are hard

standing performance for many tasks in speech processing and other domains. However:

largest diagonals, measure of asymmetry), topological features of attention matrices,
and topological features of embedding.

Main results

to analyze.

Background: Topological Data Analysis

= Linear classifier built on top of topological features outperforms a fine-tuned classifi-
cation head
= New state-of-the-art performance result for emotion recognition on CREMA-D

_ o _ ! :‘; ’ :}; @ @ ’ = Topological features are able to reveal functional roles of transformer heads
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Fig. 1. Building the persistence barcode from the data.
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Fig. 2: Our pipeline: from waveform to attention maps via transformer model (e.g.

(c) Layer 4, head 7
HuBERT, Wav2Vec2), then graph filtration and barcode.
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Fig. 3: Hj-barcode reflects the hierarchial structure of data. Sample Hy-barcode and
MST on different levels for head (2, 4); speech sample text: “l know it”, sample
phones: “sil AY1 N OW1 IH1 T sp”. Nodes and bars are colored with respect to the
phonemes they represent. Black dashed lines show barcode levels corresponding to the
trees on the right. Separators inside the bars show levels where nodes from the same
phoneme are joined to the bar's component.

Fig. 5: Heads with high correlation between Hy"" and MFCC/PLP

More pictures...

.. and some additional information can be found on the
project’'s website
https://topohubert.github.io/speech-topology-webpages/




