Источник
Digital Diagnostics
Дата публикации
13.11.2024
Авторы
Алексей Шевцов Ярослав Томинин Владислав Томинин Всеволод Малеванный Юрий Есаков Зураб Туквадзе Андрей Нефедов Пётр Яблонский Павел Гаврилов Вадим Козлов Мария Блохина Елена Наливкина Виктор Гомболевский Юрий Васильев Мария Дугова Валерия Чернина Ольга Омелянская Роман Решетников Иван Блохин Михаил Беляев
Поделиться

Assessing the Probability of Metastatic Mediastinal Lymph Node Involvement in Patients with Non-Small Cell Lung Cancer Using Convolutional Neural Networks on Chest CT

Аннотация

Lung cancer is the second most common type of cancer worldwide, making up about 20% of all cancer deaths with less than 10% 5-year survival rate for the very late stage. The recent guidelines for the most common non-small-cell lung cancer (NSCLC) type recommend performing staging based on the 8th edition of TNM classification, where the mediastinal lymph node involvement plays a key role. However, most of the non-invasive methods have a very limited level of sensitivity and are relatively accurate, but invasive methods can be contradicted for some patients. Current advances in Deep Learning show great potential in solving such problems. Still, most of these works focus on the algorithmic side of the problem, not the clinical relevance. Moreover, none of them addressed individual lymph node malignancy classification problem, restricting the indirect analysis of the whole study, and limiting the interpretability of the result without giving an option for clinicians to validate the result. This work mitigates these gaps, proposing a multi-step algorithm for each visible mediastinal lymph node segmentation and assessing the probability of its involvement in the metastatic process, using the results of histological verification on training. The developed pipeline shows 0.74 ±0.01 average Recall with 0.53 ± 0.26 object Dice Score for the clinically relevant lymph nodes segmentation task and 0.73 ROC AUC for patient’s N-stage prediction, outperforming traditional size-based criteria.

Присоединяйтесь к AIRI в соцсетях