Источник
ICML / NGSM
Дата публикации
05.07.2024
Авторы
Иван Родькин Юрий Куратов Айдар Булатов Михаил Бурцев
Поделиться

Associative Recurrent Memory Transformer

Аннотация

This paper addresses the challenge of creating a neural architecture for very long sequences that requires constant time for processing new information at each time step. Our approach, Associative Recurrent Memory Transformer (ARMT), is based on transformer self-attention for local context and segment-level recurrence for storage of task specific information distributed over a long context. We demonstrate that ARMT outperfors existing alternatives in associative retrieval tasks and sets a new performance record in the recent BABILong multi-task long-context benchmark by answering single-fact questions over 50 million tokens with an accuracy of 79.9%. The source code for training and evaluation is available on github.

Присоединяйтесь к AIRI в соцсетях