Источник
npj Computational Materials
Дата публикации
13.05.2025
Авторы
Артем Дембицкий Иннокентий Хумонен Роман Еремин Дмитрий Аксёнов Станислав Федотов Семен Буденный
Поделиться

Benchmarking Machine Learning Models for Predicting Lithium Ion Migration

Аннотация

The development of fast ionic conductors to improve the performance of electrochemical devicesrelies on expensive high-throughput (HT) density functional theory (DFT) calculations of transportproperties. Machine learning (ML) can accelerate HT workflows but requires high-quality data toensure accurate predictions from trained models. In this study, we introduce the LiTraj dataset,which comprises 13,000 percolation and 122,000 migration barriers, and 1,700 migration trajectories,calculated for Li-ion in diverse crystal structures using empirical force fields and DFT, respectively.Using LiTraj, we demonstrate that classical ML models and graph neural networks (GNNs) forstructure-to-property prediction of percolation and migration barriers can distinguish between ”fast”and ”poor” ionic conductors. Furthermore, we evaluate the capability of GNN-based universalML interatomic potentials (uMLIPs) to identify optimal Li-ion migration trajectories. Fine-tuneduMLIPs achieve near-DFT accuracy in predicting migration barriers, significantly accelerating HTscreenings of new ionic conductors.

Присоединяйтесь к AIRI в соцсетях