Источник
ACL Workshop
Дата публикации
11.07.2025
Авторы
Евгений Николаев
Иван Бондаренко
Ислам Аушев
Василий Крикунов
Андрей Глинский
Василий Коновалов
Юлия Беликова
Поделиться
FactDebug at SemEval-2025 Task 7: Hybrid Retrieval Pipeline for Identifying Previously Fact-Checked Claims Across Multiple Languages
Аннотация
The proliferation of multilingual misinformation demands robust systems for crosslingual fact-checked claim retrieval. This paper addresses SemEval-2025 Shared Task 7, which challenges participants to retrieve fact-checks for social media posts across 14 languages, even when posts and fact-checks are in different languages. We propose a hybrid retrieval pipeline that combines sparse lexical matching (BM25, BGE-m3) and dense semantic retrieval (pretrained and fine-tuned BGE-m3) with dynamic fusion and curriculum-trained rerankers. Our system achieves 67.2% crosslingual and 86.01% monolingual accuracy on the Shared Task MultiClaim dataset.
Похожие публикации
Вы можете задать нам вопрос или предложить совместный проект в области ИИ
partner@airi.net
По вопросам научного
сотрудничества и партнерства
сотрудничества и партнерства
pr@airi.net
Для журналистов и СМИ