Brain Informatics
Год публикации
Александр Панов Петр Кудеров Евгений Дживеликян Артем Латыщев

Hierarchical Intrinsically Motivated Agent Planning Behavior with Dreaming in Grid Environments


Biologically plausible models of learning may provide a crucial insight for building autonomous intelligent agents capable of doing a wide range of tasks. In this work, we propose a hierarchical model of an agent operating in an unfamiliar environment driven by a reinforcement signal. We use temporal memory to learn sparse distributed representation of state-actions and the basal ganglia model to learn effective action policy on different levels of abstraction. The learned model of the environment is utilized to generate an intrinsic motivation signal, which drives the agent in the absence of the extrinsic signal, and through acting in imagination, which we call dreaming. We demonstrate that the proposed architecture enables an agent to effectively reach goals in grid environments.

Присоединяйтесь к AIRI в соцсетях