Источник
Brain Informatics
Дата публикации
15.09.2021
Авторы
Александр Панов
Петр Кудеров
Евгений Дживеликян
Артем Латышев
Поделиться
Intrinsic Motivation to Learn Action-State Representation with Hierarchical Temporal Memory
Model-based reinforcement learning,
Intrinsic motivation,
Hierarchical temporal memory,
Sparse distributed representations
Аннотация
In this paper, we propose a biologically plausible model for learning the decision-making sequence in an external environment with internal motivation. As a computational model, we propose a hierarchical architecture of an intelligent agent acquiring experience based on reinforcement learning. We use the basal ganglia model to aggregate a reward, and sparse distributed representation of states and actions in hierarchical temporal memory elements. The proposed architecture allows the agent to build a compact model of the environment and to form an effective strategy, which is experimentally demonstrated to search for resources in grid environments.
Похожие публикации
Вы можете задать нам вопрос или предложить совместный проект в области ИИ
partner@airi.net
По вопросам научного
сотрудничества и партнерства
сотрудничества и партнерства
pr@airi.net
Для журналистов и СМИ