Источник
Joint European Conference on Machine Learning and Knowledge Discovery in Databases
Дата публикации
18.03.2023
Авторы
Вадим Порватов
Наталья Семенова
Vladislav Tishin
Artyom Sosedka
Vladislav Zamkovoy
Поделиться
Logistics, Graphs, and Transformers: Towards Improving Travel Time Estimation
Аннотация
The problem of travel time estimation is widely considered as the fundamental challenge of modern logistics. The complex nature of interconnections between spatial aspects of roads and temporal dynamics of ground transport still preserves an area to experiment with. However, the total volume of currently accumulated data encourages the construction of the learning models which have the perspective to significantly outperform earlier solutions. In order to address the problems of travel time estimation, we propose a new method based on transformer architecture – TransTTE.
Похожие публикации
Вы можете задать нам вопрос или предложить совместный проект в области ИИ
partner@airi.net
По вопросам научного
сотрудничества и партнерства
сотрудничества и партнерства
pr@airi.net
Для журналистов и СМИ