Источник
ICML
Дата публикации
18.07.2022
Авторы
Арип Асадулаев Александр Панфилов Андрей Фильченков
Поделиться

Multi-step domain adaptation by adversarial attack to H-divergence

Аннотация

Adversarial examples are transferable between different models. In our paper, we propose to use this property for multi-step domain adaptation. In unsupervised domain adaptation settings, we demonstrate that replacing the source domain with adversarial examples to H-divergence can improve source classifier accuracy on the target domain. Our method can be connected to most domain adaptation techniques. We conducted a range of experiments and achieved improvement in accuracy on Digits and Office-Home datasets.

Присоединяйтесь к AIRI в соцсетях