Источник
NeurIPS
Дата публикации
09.12.2022
Авторы
Артем Шелманов Никита Котелевский Александр Фишков Кирилл Федянин Максим Панов Артем Важенцев Александр Артеменков Федор Носков Александр Петюшко
Поделиться

Nonparametric Uncertainty Quantification for Single Deterministic Neural Network

Аннотация

This paper proposes a fast and scalable method for uncertainty quantification of machine learning models' predictions. First, we show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution. Importantly, the approach allows to disentangle explicitly \textit{aleatoric} and \textit{epistemic} uncertainties. The resulting method works directly in the feature space. However, one can apply it to any neural network by considering an embedding of the data induced by the network. We demonstrate the strong performance of the method in uncertainty estimation tasks on text classification problems and a variety of real-world image datasets, such as MNIST, SVHN, CIFAR-100 and several versions of ImageNet.

Присоединяйтесь к AIRI в соцсетях