Источник
CLEF / PAN
Дата публикации
20.03.2024
Авторы
Дарина Дементьева Даниил Московский Николай Бабаков Abinew Ali Ayele Naquee Rizwan Florian Schneider Xintong Wang Seid Muhie Yimam Дмитрий Усталов Елисей Стаковский Алиса Смирнова Ashaf Elnagar Animesh Mukherjee Александр Панченко
Поделиться

Overview of the multilingual text detoxification task at pan 2024

Аннотация

Despite different countries and social platform regulations, digital abusive speech persists as a significant challenge. One of the way to tackle abusive, or more specifically, toxic language can be automatic text detoxification—a text style transfer task (TST) of changing register of text from toxic to more non-toxic. Thus, in this shared task, we aim to obtain text detoxification models for 9 languages: English, Spanish, German, Chinese, Arabic, Hindi, Ukrainian, Russian, and Amharic. This paper presents the Multilingual Text Detoxification (TextDetox) task, the underlying datasets, the evaluation setups, the submissions from participants, and the results obtained.Warning: This paper contains rude texts that only serve as illustrative examples.

Присоединяйтесь к AIRI в соцсетях