Источник
RecSys
Дата публикации
08.10.2024
Авторы
Иван Оселедец
Евгений Фролов
Leyla Mirvakhabova
Татьяна Матвеева
Поделиться
Self-Attentive Sequential Recommendations with Hyperbolic Representations
Recommender systems,
Hyperbolic embeddings,
Hyperbolic geometry,
Collaborative filtering,
Self-attentive learning models,
Sequential learning models
Аннотация
In recent years, self-attentive sequential learning models have surpassed conventional collaborative filtering techniques in next-item recommendation tasks. However, Euclidean geometry utilized in these models may not be optimal for capturing a complex structure of behavioral data. Building on recent advances in the application of hyperbolic geometry to collaborative filtering tasks, we propose a novel approach that leverages hyperbolic geometry in the sequential learning setting. Our approach replaces final output of the Euclidean models with a linear predictor in the non-linear hyperbolic space, which increases the representational capacity and improves recommendation quality.
Похожие публикации
Вы можете задать нам вопрос или предложить совместный проект в области ИИ
partner@airi.net
По вопросам научного
сотрудничества и партнерства
сотрудничества и партнерства
pr@airi.net
Для журналистов и СМИ