Источник
IEEE Access
Дата публикации
13.08.2025
Авторы
Антон Дмитриев Илья Трофимов Евгений Бурнаев Сергей Баранников
Поделиться

Topological alternatives for Precision and Recall in generative models

Аннотация

We introduce the Normalized Topological Divergence (NTD), a fully differentiable metric that simultaneously quantifies fidelity and diversity of generative models directly in raw pixel or spectrogram space, eliminating reliance on pretrained feature extractors. For two empirical distributions P (model) and Q (reference), NTD builds a Vietoris–Rips filtration over P ∪ Q where distance matrix within Q is equal to 0. Extensive experiments on six vision and audio benchmarks: ImageNet-1k, CIFAR-10, MNIST, AFHQv2, AFHQ-Cat, LJSpeech-1, and Gaussian mixtures covering ten generator families show that NTD exposes blur, mode collapse, variance inflation and other generation artifacts. As a result, our metrics are domain-agnostic, provide a precision-recall trade-off, not offered by FID. It represent difference in variance better than density-coverage, TopP&R and P-Precision (Recall) while indicating problems of VAE-like …


Присоединяйтесь к AIRI в соцсетях