Источник
ISMAR
Дата публикации
21.10.2024
Авторы
Илья Макаров
Максим Голядкин
Сергей Сараев
Поделиться
Benchmarking and Data Synthesis for Colorization of Manga Sequential Pages for Augmented Reality
Human-centered computing,
Human computerinteraction (HCI),
Interaction paradigms,
Mixed / augmented reality,
Applied computing,
Arts and humanities,
Fine arts
Аннотация
Depth estimation is essential in Augmented Reality applications,enabling realistic object placement, scene understanding, spatialmapping, interaction, and environment awareness. This paper proposesa method to enhance depth model performance without increasinginference costs by improving the pose network in a selfsupervisedlearning setup. In particular, we enrich spatial informationin the pose network by incorporating features from differentscales and normalized coordinates. It is experimentally shown onthe KITTI dataset that our approach achieves a 2-7% improvementin the abs rel metric when compared to baseline techniques.
Похожие публикации
Вы можете задать нам вопрос или предложить совместный проект в области ИИ
partner@airi.net
По вопросам научного
сотрудничества и партнерства
сотрудничества и партнерства
pr@airi.net
Для журналистов и СМИ