Источник
CINTI
Дата публикации
12.01.2022
Авторы
Илья Макаров
Антон Захаренков
Поделиться
Deep Reinforcement Learning with DQN vs. PPO in VizDoom
Training,
Deep learning,
Visualization,
Three-dimensional displays,
Q-learning,
Navigation,
Distance learning
Аннотация
VizDoom is a flexible and easy-to-use 3D reinforcement learning research platform based on the well-known Doom first-person shooter. The challenge is to create bots that compete in the DeathMatch track, making decisions based solely on visual in-formation from the screen. The paper offers a com-parison of different approaches with reinforcement learning: Q-learning and policy-gradient algorithms. We explore the distributed learning paradigm in re-inforcement learning, and also discuss the differences in speed and quality of convergence when adding an object detection module.
Похожие публикации
Вы можете задать нам вопрос или предложить совместный проект в области ИИ
partner@airi.net
По вопросам научного
сотрудничества и партнерства
сотрудничества и партнерства
pr@airi.net
Для журналистов и СМИ