Источник
VISIGRAPP
Дата публикации
27.02.2024
Авторы
Наталья Семенова
Vaagn Chopuryan
Михаил Кузнецов
Василий Латонов
Поделиться
ImgAdaPoinTr: Improving Point Cloud Completion via Images and Segmentation.
Аннотация
Point cloud completion is an essential task consisting of inferring and filling in missing parts of a 3D point cloud representation. In this paper, we present an ImgAdaPoinTr model, which extends the original Transformer encoder-decoder architecture by accurately incorporating visual information. Besides, we assumed using segmentation of 3D objects as a part of the pipeline due to acquiring an additional increase in performance. We also introduce the novel ImgPCN dataset generated by our rendering tool. The results show that our approach outperforms AdaPoinTr by average 2.9% and 10.3% in terms of Chamfer-Distance L1 and L2 metrics, respectively. The code and dataset are available via the link https://github.com/ImgAdaPoinTr.
Похожие публикации
Вы можете задать нам вопрос или предложить совместный проект в области ИИ
partner@airi.net
По вопросам научного
сотрудничества и партнерства
сотрудничества и партнерства
pr@airi.net
Для журналистов и СМИ