Источник
Journal of Big Data
Дата публикации
13.01.2024
Авторы
Вадим Порватов
Наталья Семенова
Владимир Машуров
Vaagn Chopuryan
Арсений Иванов
Поделиться
Gct-TTE: graph convolutional transformer for travel time estimation
Machine learning,
Graph convolutional networks,
Transformers,
Geospatial data,
Travel time estimation
Аннотация
This paper introduces a new transformer-based model for the problem of travel time estimation. The key feature of the proposed GCT-TTE architecture is the utilization of different data modalities capturing different properties of an input path. Along with the extensive study regarding the model configuration, we implemented and evaluated a sufficient number of actual baselines for path-aware and path-blind settings. The conducted computational experiments have confirmed the viability of our pipeline, which outperformed state-of-the-art models on both considered datasets. Additionally, GCT-TTE was deployed as a web service accessible for further experiments with user-defined routes.
Похожие публикации
Вы можете задать нам вопрос или предложить совместный проект в области ИИ
partner@airi.net
По вопросам научного
сотрудничества и партнерства
сотрудничества и партнерства
pr@airi.net
Для журналистов и СМИ