Источник
SenSys
Дата публикации
06.05.2025
Авторы
Мария Штарк
Александр Кожевников
Петр Иванов
Илья Макаров
Поделиться
Poster Abstract: Minimizing Labeling Efforts for Fault Detection and Diagnosis
Аннотация
We present a semi-supervised fault detection method that combinescontrastive and active learning techniques to efficiently analyze sensordata in industrial systems. It uses a transformer-based encoderwith rotary positional embeddings for self-supervised pre-training,which allows it to build structured representations that can be usedfor density-based clustering using DBSCAN. This method significantlyreduces the need for manual labeling, as it only requires 20%of the data to achieve high accuracy in clustering. It outperformsunsupervised alternatives and is scalable and adaptable to evolvingfault patterns. Its reduced manual intervention makes it a valuabletool for real-world industrial health monitoring.
Похожие публикации
Вы можете задать нам вопрос или предложить совместный проект в области ИИ
partner@airi.net
По вопросам научного
сотрудничества и партнерства
сотрудничества и партнерства
pr@airi.net
Для журналистов и СМИ