Источник
IWANN
Дата публикации
21.08.2021
Авторы
Илья Макаров Мария Баханова
Поделиться

Deep Reinforcement Learning in VizDoom via DQN and Actor-Critic Agents

Аннотация

In this work, we study the problem of learning reinforcement learning-based agents in a first-person shooter environment VizDoom. We compare several well-known architectures, such as DQN, DDQN, A3C, and Curiosity-driven model, while highlighting the main differences in learned policies of agents trained via these models.

Присоединяйтесь к AIRI в соцсетях