Источник
KDD
Дата публикации
03.08.2025
Авторы
Vaagn Chopuryan
Михаил Кузнецов
Василий Латонов
Владимир Машуров
Наталья Семенова
Поделиться
MonoDeMB: Comprehensive Monocular DepthMap Benchmark
Аннотация
In this paper, we introduce a comprehensive benchmark for learning-based monocular depth estimation methods. In recent years, depthmap calculation methods have achieved impressive results. The process of comparing the performance of different models requires a lot of resources and time, which can be costly for many developers. The goal of our benchmark is to provide a comparison of how the top models perform on various datasets. We present a table with results based on our tests performed on several popular datasets and one dataset introduced in this paper. In addition, we provide a toolkit that allows each model selected for the benchmark to be tested on any suitable dataset.
Похожие публикации
Вы можете задать нам вопрос или предложить совместный проект в области ИИ
partner@airi.net
По вопросам научного
сотрудничества и партнерства
сотрудничества и партнерства
pr@airi.net
Для журналистов и СМИ