Source
DATE OF PUBLICATION
03/22/2022
Authors
Dmitrii Babaev Nikita Ovsov Ivan Nazarov Minwoo Byeon Dipam Chakraborty Edward Grefenstette Minqi Jiang Daejin Jo Anssi Kanervisto Jongmin Kim Sungwoong Kim Robert Kirk Vitaly Kurin Heinrich K Taehwon Kwon Donghoon Lee Vegard Mella Nantas Nardelli Jack Parker-Holder Roberta Raileanu Karolis Ramanauskas Tim Rockt Danielle Rothermel Mikayel Samvelyan Maciej Sypetkowski Micha l Sypetkowski Eric Hambro Sharada Mohanty Dmitry Sorokin
Share

Insights from the NeurIPS 2021 NetHack Challenge

Abstract

In  this  report,  we  summarize  the  takeaways  from  the  first  NeurIPS  2021  NetHackChallenge.   Participants  were  tasked  with  developing  a  program  or  agent  that  can  win(i.e.,  ‘ascend’ in) the popular dungeon-crawler game of NetHack by interacting with theNetHack Learning Environment (NLE), a scalable, procedurally generated, and challengingGymenvironment for reinforcement learning (RL). The challenge showcased community-driven progress in AI with many diverse approaches significantly beating the previously bestresults on NetHack.  Furthermore, it served as a direct comparison between neural (e.g.,deep  RL)  and  symbolic  AI,  as  well  as  hybrid  systems,  demonstrating  that  on  NetHacksymbolic bots currently outperform deep RL by a large margin.  Lastly, no agent got closeto winning the game, illustrating NetHack’s suitability as a long-term benchmark for AIresearch

Join AIRI